While the eect of polar-oil component on oil-brine-carbonate system wettability has been extensively investigated, there has been little quantitative analysis of the eect of non-polar components on system wettability, in particular as a function of pH. In this context, we measured the contact angle of non-polar oil on calcite surface in the presence of 10,000 ppm NaCl at pH values of 6.5, 9.5 and 11. We also measured the adhesion of non-polar oil group (–CH3) and calcite using atomic force microscopy (AFM) under the same conditions of contact angle measurements. Furthermore, to gain a deeper understanding, we performed zeta potential measurements of the non-polar oil-brine and brine-calcite interfaces, and calculated the total disjoining pressure. Our results show that the contact angle decreases from 125 to 78 with an increase in pH from 6.5 to 11. AFM measurements show that the adhesion force decreases with increasing pH. Zeta potential results indicate that an increase in pH would change the zeta potential of the non-polar oil-brine and calcite-brine interfaces towards more negative values, resulting in an increase of electrical double layer forces. The total disjoining pressure and results of AFM adhesion tests predict the same trend, showing that adhesion forces decrease with increasing pH. Our results show that the pH increase during low-salinity waterflooding in carbonate reservoirs would lift o non-polar components, thereby lowering residual oil saturation. This physiochemical process can even occur in reservoirs with low concentration of polar components in crude oils.
While the eect of polar-oil component on oil-brine-carbonate system wettability has been extensively investigated, there has been little quantitative analysis of the eect of non-polar components on system wettability, in particular as a function of pH. In this context, we measured the contact a...
مادة فرعية