The lateral and vertical temperature distribution in Oman is so far only poorly understood, particularly in the area between Muscat and the Batinah coast, which is the area of this study and which is composed of Cenozoic sediments developed as part of a foreland basin of the Makran Thrust Zone. Temperature logs (T-logs) were run and physical rock properties of the sediments were analyzed to understand the temperature distribution, thermal and hydraulic properties, and heat-transport processes within the sedimentary cover of northern Oman. An advective component is evident in the otherwise conduction-dominated geothermal play system, and is caused by both topography and density driven flow. Calculated temperature gradients (T-gradients) in two wells that represent conductive conditions are 18.7 and 19.5 °C km−1, corresponding to about 70–90 °C at 2000–3000 m depth. This indicates a geothermal potential that can be used for energy intensive applications like cooling or water desalinization. Sedimentation in the foreland basin was initiated after the obduction of the Semail Ophiolite in the late Campanian, and reflects the complex history of alternating periods of transgressive and regressive sequences with erosion of the Oman Mountains. Thermal and hydraulic parameters were analyzed of the basin’s heterogeneous clastic and carbonate sedimentary sequence. Surface heat-flow values of 46.4 and 47.9 mW m−2 were calculated from the T-logs and calculated thermal conductivity values in two wells. The results of this study serve as a starting point for assessing different geothermal applications that may be suitable for northern Oman.
The lateral and vertical temperature distribution in Oman is so far only poorly understood, particularly in the area between Muscat and the Batinah coast, which is the area of this study and which is composed of Cenozoic sediments developed as part of a foreland basin of the Makran Thrust Zone. Temp...
مادة فرعية