مقالة علمية
Dicyclic Groups and Frobenius Manifolds = زمر مزدوجة الدورة وفضاءات فروبينيس الهندسية

Dinar, Yassir.


 

Dicyclic Groups and Frobenius Manifolds = زمر مزدوجة الدورة وفضاءات فروبينيس الهندسية

Dinar, Yassir.

The orbits space of an irreducible representation of a finite group is a variety whose coordinate ring is finitely generated by homogeneous invariant polynomials. Boris Dubrovin showed that the orbits spaces of the reflection groups acquire the structure of polynomial Frobenius manifolds. Dubrovin’s method to construct examples of Frobenius manifolds on orbits spaces was carried for other linear representations of discrete groups which have in common that the coordinate rings of the orbits spaces are polynomial rings. In this article, we show that the orbits space of an irreducible representation of a dicyclic group acquires two structures of Frobenius manifolds. The coordinate ring of this orbits space is not a polynomial ring.

The orbits space of an irreducible representation of a finite group is a variety whose coordinate ring is finitely generated by homogeneous invariant polynomials. Boris Dubrovin showed that the orbits spaces of the reflection groups acquire the structure of polynomial Frobenius manifolds. Dubrovin’s...

مادة فرعية

المؤلف : Dinar, Yassir.

مؤلف مشارك : Al Maamari, Zainab

بيانات النشر : Muscat، Sultanate of Oman : Sultan Qaboos Journal of Science، 2020مـ.

التصنيف الموضوعي : العلوم البحتة|الرياضيات .

المواضيع : Differential geometry .

الهندسة التفاضلية .

رقم الطبعة : 2

المصدر : Sultan Qaboos University : Muscat، Sultanate of Oman.

لا توجد تقييمات للمادة