In this paper, we devise and evaluate a new Grid-Based Priority Routing (GBPR) protocol for Underwater Wireless Sensor Networks (UWSNs). GBPR utilizes a 3D logical grid view of the monitored area to deliver data packets to sink nodes. Particularly, data packets are forwarded on a cell-by-cell-basis using elected sensor nodes called cell-heads. The unique feature in GBPR is the classification of the neighboring cells in different priority levels according to their distances to the sink node. Cells closer to the sink are given higher priority to be selected as the next hop. This mechanism helps in reducing the number of hops; thus, reducing the energy consumption and end-to-end delay, and increasing the reliability. The protocol is evaluated and compared against EMGGR and EEF protocols available in the literature. Simulation results show that GBPR outperforms the other two protocols in terms of energy efficiency, average delay and packet delivery ratio.
In this paper, we devise and evaluate a new Grid-Based Priority Routing (GBPR) protocol for Underwater Wireless Sensor Networks (UWSNs). GBPR utilizes a 3D logical grid view of the monitored area to deliver data packets to sink nodes. Particularly, data packets are forwarded on a cell-by-cell-basis ...
مادة فرعية