Global climate change related to anthropogenic CO2 emissions is one of the most significant challenges for the future of human life on Earth. There are many potential options for reducing or even eliminating atmospheric CO2 emissions including underground sequestration, carbon mineralization and ocean storage. One of the most promising materials for carbon mineralization is Mg(OH)2 which is highly reactive and capable of forming stable carbonates. Here we show a novel low-carbon method of producing Mg(OH)2, from globally abundant olivine-rich silicate rocks. A combination of acid digestion and electrolysis of olivine were used to produce Mg(OH)2 in a fully recoverable system. The use of Mg(OH)2 from olivine provides a viable pathway for significant industrial scale reductions in global anthropogenic greenhouse gas emissions.
Global climate change related to anthropogenic CO2 emissions is one of the most significant challenges for the future of human life on Earth. There are many potential options for reducing or even eliminating atmospheric CO2 emissions including underground sequestration, carbon mineralization and oce...
مادة فرعية