Managing sediments dredged from reservoirs of recharge dams is an environmental issue, however, these sediments can be an abundant and economical source of fine-grained fill soil. This experimental investigation quantifies the geotechnical properties of a reservoir sediment used to improve engineering properties of a poorly graded dune sand in Oman. The binary mixes were prepared with different percentages (5, 10, 20, 50, 75, 90, 95%) of sediment with sand. Laboratory tests such as gradation, consistency limits, compaction, and unconfined compression tests were performed to measure the engineering characteristics of the binary mixtures. The results showed that the maximum dry density increases up to a sediment content of 50% and then decreases with further increase in the sediment content. The optimum water content increases with the increase in sediment content from 17% for pure sand to 22.5% for pure sediment. The optimum moisture content shows a good correlation with the plastic limit of the binary mixture of sand and sediment. The unconfined compressive strength substantially increases with sediment content up to 75% and then decreases with further increase in the sediment content. The binary mixture of sand sediment is sensitive to moisture, however, the order of strength stability against moisture is dune sand mixed with 75, 50, and 20% sediments. The addition of sediment to dune sand improved the uniformity coefficient to some extent with an increase in the maximum and minimum void ratios as well. The elemental analysis of the sediment confirms that the material is non-contaminated and can be employed in geotechnical engineering applications as a sustainable and environmentally friendly solution.
Managing sediments dredged from reservoirs of recharge dams is an environmental issue, however, these sediments can be an abundant and economical source of fine-grained fill soil. This experimental investigation quantifies the geotechnical properties of a reservoir sediment used to improve engine...
مادة فرعية