The Oman ophiolite is regarded as best proxy for accreted oceanic crust from typical fast-spreading ridge systems on land. However, the Oman ophiolite is influenced by initial subduction zone initiation, and the nature of the details of the subduction zone setting is still under controversial debate. While a first magmatic phase shows features of magmatic accretion very similar to those known from the East Pacific Rise, except that the primary melts were slightly water-enriched, a second type of magmatism is characterized by an apparent subduction-zone related imprint, producing rocks like FAB basalts and boninites in the upper crust, as well as cross-cutting gabbronorites and wehrlites in the deeper crust. In this paper, we apply diverse experimental studies in wet tholeiitic and peridotitic systems performed at lower pressures (100 to 500 MPa) in the experimental lab of the University Hannover, in order to constrain the details of the magmatic processes proceeded at the Oman ophiolite paleoridge during the Cretaceous, with special focus on the influence of water on the phase stabilities and phase relations. The experiments were performed in vertically oriented internally heated pressure vessels (IHPV) (see Berndt et al., 2002; Fig. 1). This facility uses as pressure medium mixtures of Ar and H2 in order to adjust the required fH2 in the vessel, enabling us to control the redox conditions. The fH2 prevailing in the IHPV at high P and T was measured with a Shaw-membrane made of platinum. The overall variation in fO2 in all experimental series was in the range between ~FMQ-1 and ~FMQ+3.2, thus covering the range of oxygen fugacities prevailing in natural MORB magmas (Bezos and Humler, 2005).
The Oman ophiolite is regarded as best proxy for accreted oceanic crust from typical fast-spreading ridge systems on land. However, the Oman ophiolite is influenced by initial subduction zone initiation, and the nature of the details of the subduction zone setting is still under controversial debate...
مادة فرعية