Reverse osmosis (RO) technology shows common popularity in the field of water treatment as an advanced stage to eliminate the residual biogenic elements and dissolved impurities after the traditional treatment processes. This article highlights the applicability of using RO membrane technology as a post-treatment stage to treat the discharged effluent from the Gaza wastewater treatment plant. The designed experimental model reveals optimal removal efficiency between 92 and 100% for a number of physical, chemical and biological pollutants. The RO membrane unit demonstrates significant removal efficiency compared to the sand filter where the RO removal efficiency for BOD, TSS, TDS, Fecal Coliform and NO3 were 100, 97.5, 92, 100 and 100%, respectively. The quality of reclaimed wastewater was idealistic where the contents of BOD, Fecal Coliform and NO3 in the permeate were nil, and the concentrations of TDS and TSS were 20 and 296 ppm, respectively. Practically, the results confirm that the wastewater with the reclaimed quality could be used for agricultural activities with no degree of restriction according to FAO’s guidelines water quality for irrigation. According to the Palestinian Standard (PS), the quality of reclaimed wastewater is high, class (A), and it could be used without restrictions to irrigate many crops and for the purposes of groundwater replenishment. Related to energy estimation and cost analysis, the numerical model and the market analysis study demonstrate the energy of 1.23 kWh and total cost, i.e. fixed and energy costs, of 0.58 USD to produce 1 m3 of reclaimed wastewater using the RO membrane in the Gaza Strip over a projected lifespan of 5 years.
Reverse osmosis (RO) technology shows common popularity in the field of water treatment as an advanced stage to eliminate the residual biogenic elements and dissolved impurities after the traditional treatment processes. This article highlights the applicability of using RO membrane technology as ...
مادة فرعية