The present paper deals with exact solutions for the free vibration characteristics of thin circular plates elastically restrained against translation and resting on Winkler-type elastic foundation based on the classical plate theory. Parametric investigations are carried out for estimating the influence of edge restraint against translation and stiffness of the elastic foundation on the natural frequencies of circular plates. The elastic edge restraint against translation and the presence of elastic foundation has been found to have a profound influence on vibration characteristics of the circular plate undergoing free transverse vibrations. Computations are carried out for natural frequencies of vibrations for varying values of translational stiffness ratio and stiffness parameter of Winkler-type foundation. Results are presented for twelve modes of vibration both in tabular and graphical form for use in design. Extensive data is tabulated so that pertinent conclusions can be arrived at on the influence of translational edge restraint and the foundation stiffness ratio of the Winkler foundation on the natural frequencies of uniform isotropic circular plates.
The present paper deals with exact solutions for the free vibration characteristics of thin circular plates elastically restrained against translation and resting on Winkler-type elastic foundation based on the classical plate theory. Parametric investigations are carried out for estimating the i...
مادة فرعية