The transfer of spin angular momentum from a spin polarized current provides an efficient way of reversing the magnetization direction of the free layer of the magnetic tunnel junction (MTJ), and while faster reversal will reduce the switching energy, this in turn will lead to low power consumption. In this work, we propose a design where a spin torque oscillator (STO) is integrated with a conventional magnetic tunnel junction (MTJ) which will assist in the ultrafast reversal of the magnetization of the free layer of the MTJ. The structure formed (MTJ stacked with STO), will have the free layer of the MTJ sandwiched between two spin polarizer layers, one with a fixed magnetization direction perpendicular to film plane (main static polarizer) and the other with an oscillatory magnetization (dynamic polarizer). The static polarizer is the fixed layer of the MTJ itself and the dynamic polarizer is the free layer of the STO.
The transfer of spin angular momentum from a spin polarized current provides an efficient way of reversing the magnetization direction of the free layer of the magnetic tunnel junction (MTJ), and while faster reversal will reduce the switching energy, this in turn will lead to low power consumption....
مادة فرعية