The subject of thermo-electroelasticity involves many complications due to the multiple ways in which the mechanical, thermal and electric fields can interact, some of these involving non-linearities. In extended thermodynamics, an additional difficulty arises due to the requirement of finiteness of the speed of propagation of the thermal disturbances. This implies, as may be observed in the extensive literature on the subject, a re-visiting of the basic postulates of thermodynamics, ultimately leading to the desired generalization. There are only a few nonlinear models dealing with this subject. In order to consider general nonlinear models, it is necessary to study linear ones first, as they represent most of the basic features of the studied phenomena. This is particularly true when the problem is tackled numerically through iteration methods, in which case the starting field equations are linear.
The subject of thermo-electroelasticity involves many complications due to the multiple ways in which the mechanical, thermal and electric fields can interact, some of these involving non-linearities. In extended thermodynamics, an additional difficulty arises due to the requirement of finiteness of...
مادة فرعية