In this paper, we introduce a new method to analyze the convergence of the standard finite element method for elliptic variational inequalities with noncoercive operators (VI). The method consists of combining the so-called Bensoussan-Lions algorithm with the characterization of the solution, in both the continuous and discrete contexts, as fixed point of contraction. Optimal error estimates are then derived, first between the continuous algorithm and its finite element counterpart, and then between the true solution and the approximate solution.
In this paper, we introduce a new method to analyze the convergence of the standard finite element method for elliptic variational inequalities with noncoercive operators (VI). The method consists of combining the so-called Bensoussan-Lions algorithm with the characterization of the solution, in bot...
مادة فرعية