In reservoirs with thickness exceeding fifty meters, compositional guiding has been found to cause significant variation in performance. Main fluid properties, governing the magnitude of reservoir performance, such as density; formation volume factor and fluid viscosity experience variation due to varying fluid composition along the hydrocarbon column. These variations cause erroneous estimation of stock-tank oil in place and may infer reservoir engineers to consider inappropriate secondary oil recovery methods, for example. In the presence of gravity segregation within the oil column, heavy ends will form a heavy oil blanket in the lower part of the reservoir. Such a scenario may result in poor displacement and an earlier breakthrough when water drive is the dominant fluid flow mechanism. In this paper reservoir performance due to varying reservoir fluid composition has been examined using reservoir simulation analysis and recommendations for better characterization of reservoir fluid sampling are outlined.
In reservoirs with thickness exceeding fifty meters, compositional guiding has been found to cause significant variation in performance. Main fluid properties, governing the magnitude of reservoir performance, such as density; formation volume factor and fluid viscosity experience variation due to v...
مادة فرعية